A Note on weakly ω -I -Continuous Functions

P. Revathi¹ and A. Vadivel²

¹Govt. Polytechnic for Women, TPK Road, Madurai-625 011; Department of Mathematics (FEAT), Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, Post Graduate and Research Department of Mathematics, Government Arts College (Autonomous). Karur, Tamil Nadu-639 005; Department of Mathematics, Annamalai University, Annamalai Nagar-608 002, India.

Abstract

In [9], Vadivel et al. introduced and investigated the notions of weakly $\omega - I$ -continuous and weak^{*} - $\omega - I$ -continuous functions in ideal topological spaces. In this paper, we investigate their relationships with continuous and θ -continuous functions.

Key words and phrases: Weakly ω - I -continuous, weak * - ω - I -continuous, θ -continuous.

AMS (2000) subject classification: 54C10.

1. Introduction

In a topological space (X,τ) , the closure and the interior of any subset A of X will be denoted by ClA and IntA, respectively. An ideal is defined as a collection I of subsets of X satisfing the following two conditions: (1) If $A \in I$ and $B \subset A$, then $B \in I$; (2) If $A \in I$ and $B \in I$, then $A \cup B \in I$. Let (X,τ) be a topological space and I an ideal of subsets of X. An ideal topological space is a topological space (X,τ) with an ideal I on X and is denoted by (X,τ,I) . For a subset $A \subset X$, $A^*(I) = \{x \in X : U \cap A \notin I \text{ for each open neighbourhood } U$ of x} is called the local function of A with respect to I and τ [5]. We simply write A^* instead of $A^*(I)$ in case there is no chance for confusion. For every ideal topological space (X,τ,I) , there exists a topology $\tau^*(I)$ (briefly, τ^*), finer than τ , generated by $\beta(I,\tau) = \{U - A : U \in \tau \text{ and } A \in I\}$, but in general $\beta(I,\tau)$ is not always a topology [3] Additionally, $Cl^*A = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(I)$.

The following Lemma is useful in the sequel.

Lemma 1.1 [3] Let (X, τ, I) be an ideal topological space and A, B subsets of X. Then the following properites hold.

- (a) If $A \subset B$, then $A^* \subset B^*$.
- (b) $A^* = Cl(A^*) \subseteq Cl(A)$.
- (c) $(A^*)^* \subseteq A^*$.
- (d) If $U \in \tau$, then $U \cap A^* \subseteq (U \cap A)^*$.

Vadivel et al. [9] introduced the notions of weakly ω -*I*-continuous and weakly^{*}-*I*-continuous functions in ideal topological spaces. Also ω -*I*-continuous functions were studied by Jeyanthi et al. [4]. In Theorem 2.8 (below), we obtain an improvement of Theorems 2.5 and 2.8 of [4].

Definition 1.1 A function $f:(X,\tau) \to (Y,\varphi,I)$ is said to be weakly- ω -I-continuous (briefly weakly ω -I-c) if for each $x \in X$ and each open neighbourhood V of f(x), there exists a ω -open neighbourhood U of x such that $f(U) \subset Cl^*V$.

Let A be a subset of an ideal topological space. The *-frontier of A is defined by $A^* - intA$ and is denoted by fr^*A .

Definition 1.2 A function $f:(X,\tau) \to (Y,\varphi,I)$ is said to be weak^{*}-*I*-continuous (breifly weak^{*}- ω -*I*-*c*) [9] if for each open set *V* in *Y*, $f^{-1}(fr^*V)$ is closed in *X*.

We will use the following Theorem.

Theorem 1.1 [9] A function $f:(X,\tau) \to (Y,\varphi,I)$ is continuous if and only if it is both weakly ω -I-continuous and weak^{*} - ω -I-continuous.

2. Weakly ω -*I*-Continuouity and θ -continuity

In some cases weakly $\omega - I$ -continuity or weak^{*} - $\omega - I$ -continuity implies continuity or θ -continuity. Now we can give related results.

Theorem 2.1 Let (Y, φ, I_f) be an ideal topological space such that U is infinite for every $U \in \varphi$ and if $U, V \in \varphi$ such that $U \cap V = \phi$ then $U = \phi$ or $V = \phi$ and I_f denotes the ideal of finite subsets of Y. Then a function $f: (X, \tau) \to (Y, \varphi, I_f)$ is continuous if and only if it is weak^{*}- φ - I_f -c.

Proof The necessity is clear by Theorem 1.1.

Sufficiency. We first show that $V^* = Y$ for each non empty open set V in Y. Let $y \in Y$ and $y \in U \in \varphi$. Then $U, V \in \varphi$ and $U \cap V \neq \phi$ by hypothesis. Thus $U \cap V$ is infinite by hypothesis. Therefore $U \cap V \notin I_f$. Then $y \in V^*$. Hence $V^* = Y$. Therefore, f is weakly $\omega - I_f - c$ and by Theorem 1.1, f is continuous.

Example 2.1 Let $(Y, \varphi, I_f) = (R, \varphi, I_f)$, where φ is the left ray or right ray or cofinite topology. Then, for (R, φ) , the conditions in Theorem 2.1 are satisfied. Hence a function $f: (X, \tau) \rightarrow (R, \varphi, I_f)$ is continuous if and only if it is weak^{*} - ω - I_f - c.

Definition 2.1 A function $f:(X,\tau) \to (Y,\varphi)$ is said to be θ -continuous [1] (resp. weakly continuous [6]) at x_0 if for each open neighbourhood V of $f(x_0)$, there is an open neighbourhood U of x_0 such that $f(ClU) \subseteq ClV$ (resp. $f(U) \subseteq Cl(V)$). f is said to be θ -continuous (resp. weakly continuous) if it is θ -continuous (resp. weakly continuous) at each point of X.

It is well known that continuity implies θ -continuity and θ -continuity implies weak continuity. Vadivel et al. [9]showed that weak- ω -I-continuity strictly lies between continuity and weak continuity. Therefore, we have the following diagram:

 $\begin{array}{c} \operatorname{continuity} \ \Rightarrow \ \theta\operatorname{-continuity} \\ \ \downarrow \qquad \qquad \downarrow \\ \operatorname{weak-} \omega\operatorname{-} I \operatorname{-continuity} \ \Rightarrow \ \operatorname{weak} \operatorname{continuity} \end{array}$

Remark 2.1 By the two examples stated below, we show that θ -continuity and weak- ω -*I*-continuity are independent of each other.

Example 2.2 Let $X = \{a, b, c, d, e\}$, $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{a, b, c\}\}$ and I = P(X). Define the function $f: X \to X$ as $f = \{(a, e), (b, d), (c, c), (d, b), (e, d)\}$. Then f is θ -continuous but not weak- ω -I-continuous.

(i) Let x = a, b or $e \in X$ and $V = X \in \tau$ such that $f(x) \in V$. Then, there exists $U = X \in \omega(\tau)$ such that $x \in X = U$ and $f(ClU) \subseteq X \subseteq ClX = X$.

(ii) Let $c \in X$ and $V = \{c\}$, $V = \{a, c\}$, or $V = \{a, b, c\} \in \tau$ such that $f(c) = c \in V$. Then there exists a ω -open set $U = \{c\} \subseteq X$ such that $c \in U$ and $f(ClU) = f(\{b, c, d, e\}) = \{d, c, b\} \subseteq Cl(\{c\}) = \{b, c, d, e\} \subseteq Cl(\{a, c\}) = X = Cl(\{a, b, c\})$.

(iii) Let $d \in X$ and V = X or $V = \{a, b, c\} \in \tau$ such that $f(d) = b \in V$. Then there exists a ω -open set $U = X \subseteq X$ such that $d \in U$ and $f(ClU) = f(X) \subseteq X \subseteq Cl(\{a, b, c\}) = X = ClX$.

By (i), (ii), (iii), f is θ -continuous. On the other hand, for $V = \{a, b, c\} \in \tau$, $f^{-1}(V) = f^{-1}(\{a, b, c\}) = \{c, d\} \notin \tau$. Therefore f is not continuous. Then f is not weak- ω -I-continuous.

Example 2.3 Let $X = \{1, 2, 3, 4\}$, $\tau = \{X, \phi, \{1, 2, 3\}, \{3\}, \{3, 4\}\}$ and $Y = \{a, b, c, d\}$, $\sigma = \{Y, \phi, \{a, b\}, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$ and $I = \{\phi\}$, Then $\beta(I, \sigma) = \sigma = \sigma^*$. Therefore $CIV = CI^*V$ for every $V \in \sigma$. Define the function $f : X \to Y$ as $f = \{(1, a), (2, b), (3, c), (4, d)\}$. Then f is weak- ω -I-continuous but not θ -continuous.

First we show that $f:(X,\tau) \rightarrow (Y,\sigma,I)$ is weak- ω -I-continuous

(i) Let $\{1\} \in X$ and $V = \{a,b\}, V = \{a,b,d\}$ or $V = Y \in \sigma$ such that $f(1) = a \in V$. . Then, there exists a ω -open set $U = \{1,2,3\} \subseteq X$ such that $\{1\} \in U$ and $f(U) = \{a,b,c\} \subseteq Cl^*(\{a,b\}) = \{a,b,c\} \subset Cl^*(\{a,b,d\}) = Cl^*(Y) = Y$.

(ii) Let $\{2\} \in X$ and $V = \{b\}$, $V = \{a,b\}, V = \{b,d\}, V = \{a,b,d\}, V = \{b,c,d\}$ or $V = Y \in \sigma$ such that $f(2) = b \in V$. Then there exists a ω -open set $U = \{1,2,3\} \subseteq X$ such that $\{2\} \in U$ and

 $f(U) = \{a, b, c\} \subseteq Cl^*(\{b\}) = \{a, b, c\} \subseteq Cl^*(\{b, d\}) \subseteq Cl^*(\{a, b, d\}) = Cl^*(\{b, c, d\}) = Cl^*(Y) = Y.$

(iii) Let $\{3\} \in X$ and $V = \{b, c, d\}$ or $V = Y \in \sigma$ such that $f(3) = \{c\} \in V$. Then there exists a ω -open set $U = \{3\} \subseteq X$ such that $\{3\} \in U$ and $f(U) = \{c\} \subseteq Cl^*(\{b, c, d\}) = Cl^*(Y) = Y$.

(iv) Let $\{4\} \in X$ and $V = \{d\}, V = \{b, d\}, V = \{a, b, d\}, V = \{b, c, d\}$ or $V = Y \in \sigma$ such that $f(4) = d \in V$. Then there exists a ω -open set $U = \{3, 4\} \subseteq X$ such that $\{4\} \in U$ and $f(U) = \{c, d\} \subseteq Cl^*(\{d\}) = \{c, d\} \subseteq Cl^*(\{b, d\}) = Cl^*(\{a, b, d\}) = Cl^*(\{b, c, d\}) = Cl^*(Y) = Y$. By (i), (ii), (iii) and (iv), f is weakly ω -I-continuous.

Now we show that $f:(X,\tau) \rightarrow (Y,\sigma)$ is not θ -continuous.

Let $\{1\} \in X$ and $V = \{a, b\} \in \sigma$ such that $f(1) = a \in V \in \sigma$. But, for every open set $U \subseteq X$ such that $\{1\} \in U$, where $U = \{1, 2, 3\}$ or U = X, ClU = X. Then $f(ClU) = Y \neq ClV = \{a, b, c\}$. Therefore $f: (X, \tau) \rightarrow (Y, \sigma)$ is not θ -continuous.

Theorem 2.2 Let (Y, σ) be a regular space. Then for a function $f: (X, \tau) \rightarrow (Y, \sigma, I)$, the following properties are equivalent:

- (a) f is continuous;
- (b) f is θ -continuous;
- (c) f is weakly ω -I-c;
- (d) f is weakly continuous.

Proof It is shown in Theorem 2 of [6] that if (Y, σ) is regular space, then a function $f:(X,\tau) \rightarrow (Y,\sigma)$ is weakly continuous if and only if f is continuous.

Theorem 2.3 Let (Y, σ, I) be any ideal topological space such that $Y - V \subseteq V^*$ for every $V \in \sigma$. Then

(a) Every function $f:(X,\tau) \to (Y,\sigma,I)$ is θ -continuous and weakly $\omega - I - c$.

(b) A function $f: (X,\tau) \to (Y,\sigma,I)$ is continuous if and only if it is weak $* - \omega - I - c$.

Proof (a) By hypothesis $Cl^*(V) = Y$ for every $V \in \sigma$ and every function f is weakly $\omega - I - c$. Furthermore ClV = Y for every $V \in \sigma$ since $Cl^*V \subseteq ClV$. Thus every function f is θ -continuous.

(b) By (a), every function $f:(X,\tau) \to (Y,\sigma,I)$ is weakly $\omega - I - c$ and hence by Theorem 1.1 f is continuous.

Let (X,τ) be a space with an ideal I on X and $D \subseteq X$. Then $I_D = \{D \cap A : A \in I\}$ is obviously an ideal on D.

Theorem 2.4 If $f:(X,\tau) \to (Y,\sigma,I)$ is weakly $\omega - I - c$, D is a dense subset in the topological space (Y,σ^*) and $f(X) \subseteq D$, then $f:(X,\tau) \to (D,\sigma_D,I_D)$ is weakly $\omega - I_D - c$, where (D,σ_D) is a subspace of (Y,σ) .

Proof Let $x \in X$ and W be any open set of D containing f(x). That is $f(x) \in W \in \sigma_D$. Then there exists a $V \in \sigma$ such that $W = D \cap V$. Since $f:(X,\tau) \to (Y,\sigma,I)$ is weakly $\omega - I - c$ and $f(x) \in V \in \sigma$, there exists $U \in \tau$ such that $x \in U$ and $f(U) \subseteq Cl^*(V)$. If D is a dense subset in the topological space (Y,σ^*) , then D is a dense subset in the topological space (Y,σ^*) , then D is a dense $Cl^*D \subseteq ClD$. Since $\sigma \subseteq \sigma^*$, $V \in \sigma^*$. So $Cl^*(D \cap V) = Cl^*V$ since D is dense. Thus $f(U) \subseteq Cl^*V \cap f(X) \subseteq Cl^*(D \cap V) \cap D = Cl^*V \cap D$. Since $W = D \cap V$, $Cl_D^*W = Cl^*V \cap D$ by **Error! Reference source not found.**, Lemma [4]. So $f(U) \subseteq Cl_D^*W$. Hence we obtain that $f:(X,\tau) \to (D,\sigma_D,I_D)$ is weakly $\omega - I_D - c$.

Vadivel et al. [9] also introduced the notions of weakly FI^* -spaces.

An ideal topological space (X, τ, I) is said to be a weakly FI^* -space if $ClA \subseteq A^*$ for every ω -open set $A \subseteq X$.

First we investigate some properties of weakly *FI*^{*}-spaces.

Theorem 2.5 An ideal topological space (X, τ, I) is a weakly FI^* -space if and only if $U \notin I$ for every $U \in \tau - \{\phi\}$.

Proof Necessity. Let (X, τ, I) be an weakly FI^* -space. Suppose that there exists $U \in \tau - \{\phi\}$ such that $U \in I$. Let $x \in U$. Then $x \in ClU$. Also since $x \in U \in \tau$ and $U \cap U = U \in I$, $x \notin U^*$. Thus $ClU \not\subseteq U^*$ and this is contradiction.

Sufficiency. Let $U \notin I$ for every $U \in \tau - \{\phi\}$. Let A be an open subset of X. If $x \in ClA$ then $U \cap A \neq \phi$ for each open neighbourhood U of x. Also since $U \cap A \in \tau - \{\phi\}, U \cap A \notin I$. Hence we obtain that $x \in A^*$. Thus $ClA \subset A^*$. Therefore (X, τ, I) is a weakly FI^* -space.

Recall that an ideal I of subsets of X in an ideal space (X, τ, I) is said to be codense if $\tau \cap I = \{\phi\}$.

Corollary 2.1 An ideal topological space (X, τ, I) is a weakly FI^* -space if and only if *I* is codense.

The following Theorem will be useful in the sequel.

Theorem 2.6 Let (X, τ, I) be a weakly FI^* -space and $A \in \tau$. Then the following properties hold:

(a) $A^* = Cl^*A = (ClA)^* = Cl(A^*) = ClA$,

(b) $Cl^*(ClA) = Cl(Cl^*A) = Cl^*(A^*).$

Proof (a) If $A \in \tau$ then $ClA \subset A^*$ since (X, τ, I) is a weakly FI^* -space. Thus $(ClA)^* \subseteq (A^*)^* \subseteq A^*$ by Lemma 1.1. Also since $A \subseteq ClA, A^* \subseteq (ClA)^*$ by Lemma 1.1.

JETIRAW06014 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> 112

,

 $A \in \tau$

Therefore $A^* = (ClA)^*$. Since $Cl^*A = A \cup A^*$ and (X, τ, I) is a weakly FI^* -space, $Cl^*A = A^*$. Thus $Cl(A^*) = A^*$ by Lemma 1.1 (b). Also since (X, τ, I) is a weakly FI^* -space, $ClA = A^*$ by Lemma 1.1 (b). Hence we obtain $A^* = Cl^*A = (ClA)^* = Cl(A^*) = ClA$.

For (b) $Cl^{*}(ClA) = (ClA)^{*} \cup ClA = Cl(A^{*}) \cup ClA = Cl(A^{*} \cup A) = Cl(Cl^{*}A) = Cl^{*}(A^{*}).$

Thorem 2.7 Let (X,τ) be a regular space and (Y,σ,I) be a weakly FI^* -space. A function $f:(X,\tau) \to (Y,\sigma,I)$ is θ -continuous if and only if it is weakly ω -I-c.

Proof Necessity. Let f be θ -continuous, $x \in X$ and V be any open set of Ycontaining f(x). Since f is θ -continuous, there exists a ω -open neighbourhood U of such that $f(ClU) \subseteq ClV$. Then since (Y, σ, I) is a weakly FI^* -space, x $f(U) \subset f(ClU) \subset ClV \subset V^* \subset V^* \cup V = Cl^*V$. Thus f is weakly $\omega - I - c$.

Sufficiency. Let f be weakly $\omega - I - c$, $x \in X$ and V be an open set of Ycontaining f(x). Since f is weakly $\omega - I - c$ there exists a ω -open neighbourhood U of x such that $f(U) \subseteq Cl^*(V)$. Since $\sigma \subseteq \sigma^*$, $f(U) \subseteq Cl^*(V) \subseteq Cl(V)$. Since (X, τ) is a regular space, there exists an open neighbourhood H of x such that $x \in H \subset ClH \subset U$. Then $f(ClH) \subset ClV$. Thus f is θ -continuous.

Corollary 2.2 Let (X,τ) be a regular space and (Y,σ,I) be a weakly FI^* -space. For a function $f: (X, \tau) \rightarrow (Y, \sigma, I)$, the following properties are equivalent:

- (a) f is θ -continuous;
- (b) f is weakly ω -I-c;
- (c) f is weakly continuous.
 - **Proof** (a) \Rightarrow (b). This is shown in Theorem 2.7

(b) \Rightarrow (c). It is shown in Remark 3.1 of [9] that every weakly ω -*I*-*c* function is weakly continuous.

(c) \Rightarrow (b). Let $x \in X$ and V be any open neighbourhood of f(x). Since f is weakly continuous, there exists a ω -open neighbourhood U of x such that $f(U) \subseteq ClV$. Since (Y, σ, I) is a weakly FI^* -space, by Theorem 2.6 we have $f(U) \subseteq Cl^*V$. This shows that f is weakly ω -*I*-*c*.

Theorem 2.8 Let (Y, σ, I) be a weakly FI^* -space. For a function $f: (X, \tau) \rightarrow (Y, \sigma, I)$, the following properties are equivalent:

- (a) f is weakly ω -I-c;
- (b) f is weakly continuous;
- (c) $Cl(f^{-1}(V)) \subseteq f^{-1}(Cl^*(V))$ for every $V \in \sigma$.

Proof (a) \Leftrightarrow (b). This follows from Remark 3.1 of 2.9 and the proof of (c) \Rightarrow (b) in Corollary 2.2.

(b) \Rightarrow (c). Let f be weakly continuous. By Theorem 4 of [7], $Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$ for every open set V of Y. Since (Y, σ, I) is a weakly FI^* -space, by Theorem 2.6 we obtain $Cl(f^{-1}(V)) \subset f^{-1}(Cl^*(V))$.

(c) \Rightarrow (b). Let V be any open set of Y. Since (Y, σ, I) is a weakly FI^* -space, $Cl^{*}(V) = Cl(V)$ and hence we have $Cl(f^{-1}(V)) \subset f^{-1}(ClV)$. It follows from Theorem 7 of [8] that f is weakly continuous.

References

[1] S. Fomin, Extension of topological spaces, Ann. of Math., 44 (1943), 471-480.

[2] E. Hatir, A. Keskin and T. Noiri, A note on strong $\beta - I$ -sets and strongly $\beta - I$ -continuous functions, Acta Math. Hungar., 108 (2005), 87-94.

[3] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math Monthly, 97 (1990), 295-310.

[4] V. Jeyanthi, V. R. Devi and D. Sivaraj, Weakly-*I* -continuous functions, Acta Math. Hungar., 113 (2006), 319-324.

[5]K. Kuratowski, Topology, Vol. 1, Academic Press (Newn York, 1966).

[6]N. Levine, A decomposition of contnuity in topological spaces, Amer Math. Monthly., 68(1961), 44-46.

[7]T. Noiri, On weakly continuous mappings, Proc. Amer. Math. Soc., 46 (1974), 120-124.

[8]D. A. Rose, Weak continuity and almost continuity, Internat, J. Math. Math. Sci., 7 (1984), 311-318.

[9]A. Vadivel and P. Revathi, On weakly ω -*I*-continuous functions in ideal topological spaces-submitted.

